Particle motion driven by solute gradients with application to autonomous motion: continuum and colloidal perspectives

نویسنده

  • JOHN F. BRADY
چکیده

Diffusiophoresis, the motion of a particle in response to an externally imposed concentration gradient of a solute species, is analysed from both the traditional coarse-grained macroscopic (i.e. continuum) perspective and from a fine-grained micromechanical level in which the particle and the solute are treated on the same footing as Brownian particles dispersed in a solvent. It is shown that although the two approaches agree when the solute is much smaller in size than the phoretic particle and is present at very dilute concentrations, the micromechanical colloidal perspective relaxes these restrictions and applies to any size ratio and any concentration of solute. The different descriptions also provide different mechanical analyses of phoretic motion. At the continuum level the macroscopic hydrodynamic stress and interactive force with the solute sum to give zero total force, a condition for phoretic motion. At the colloidal level, the particle’s motion is shown to have two contributions: (i) a ‘backflow’ contribution composed of the motion of the particle due to the solute chemical potential gradient force acting on it and a compensating fluid motion driven by the long-range hydrodynamic velocity disturbance caused by the chemical potential gradient force acting on all the solute particles and (ii) an indirect contribution arising from the mutual interparticle and Brownian forces on the solute and phoretic particle, that contribution being non-zero because the distribution of solute about the phoretic particle is driven out of equilibrium by the chemical potential gradient of the solute. At the colloidal level the forces acting on the phoretic particle – both the statistical or ‘thermodynamic’ chemical potential gradient and Brownian forces and the interparticle force – are balanced by the Stokes drag of the solvent to give the net phoretic velocity. For a particle undergoing self-phoresis or autonomous motion, as can result from chemical reactions occurring asymmetrically on a particle surface, e.g. catalytic nanomotors, there is no imposed chemical potential gradient and the backflow contribution is absent. Only the indirect Brownian and interparticle forces contribution is responsible for the motion. The velocity of the particle resulting from this contribution can be written in terms of a mobility times the integral of the local ‘solute pressure’ – the solute concentration times the thermal energy – over the surface of contact between the particle and the solute. This was the approach taken by Córdova-Figueroa & Brady (Phys. Rev. Lett., vol. 100, 2008, 158303) in their analysis of self-propulsion. It is shown that full hydrodynamic interactions can be incorporated into their analysis by a simple scale factor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Insulated Up and Down Lid Motion on the Heat Transfer of a Lid-Driven Cavity with an attached fin

This study investigates the effect of lid motion on the optimal characteristics a thin rectangular fin attached on the hot wall of a square lid-driven cavity with active vertical walls. The optimal fin position is studied for Richardson numbers of 0.1-10. The effect of mounting a rectangular fin with a thermal conductivity of 1 and 1000 on minimization and maximization of heat transfer through ...

متن کامل

An automated time and hand motion analysis based on planar motion capture extended to a virtual environment

In the context of industrial engineering, the predetermined time systems (PTS) play an important role in workplaces because inefficiencies are found in assembly processes that require manual manipulations. In this study, an approach is proposed with the aim to analyze time and motions in a manual process using a capture motion system embedded to a virtual environment. Capture motion system trac...

متن کامل

Membraneless water filtration using CO2

Water purification technologies such as microfiltration/ultrafiltration and reverse osmosis utilize porous membranes to remove suspended particles and solutes. These membranes, however, cause many drawbacks such as a high pumping cost and a need for periodic replacement due to fouling. Here we show an alternative membraneless method for separating suspended particles by exposing the colloidal s...

متن کامل

Mesoscale modeling of colloidal suspensions with adsorbing solutes.

We construct a mesoscale model of colloidal suspensions that contain solutes reversibly adsorbing onto the colloidal particle surfaces. The present model describes the coupled dynamics of the colloidal particles, the host fluid, and the solutes through the Newton-Euler equations of motion, the hydrodynamic equations, and the advection-diffusion equation, respectively. The solute adsorption is m...

متن کامل

Design and Analysis of a Novel Tendon-less Backbone Robot

A new type of backbone robot is presented in this paper. The core idea is to use a cross shape mechanism with the principle of functioning of the scissors linkages, known as a pantograph. Although this continuum arm acts quite similar to tendon-driven robot, this manipulator does not include any tendon in its structure. This design does not suffer from the weaknesses of the continuum design suc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010